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The variable-coefficient Korteweg-de Vries equation 

H, + $d-PHHt -I- &Kd iH tg  = 0 

with d = d ( s X )  is discuswd for solitary-wave initial profiles. A straightforward 
asymptotic solution for e -+ 0 is constructed and is shown to be non-uniform 
both ahead of and behind the solitary wave. The behaviour ahead is rectified 
by matching to the appropriate exponential form and, together with the use of 
conservation laws for the equation, the nature of the solution behind the solitary 
wave is discussed. This leads to the formulation of the solution in the oscillatory 
‘tail ), which is again matched directly. 

The results are applied to  the development of the solitary wave into variable- 
depth water, and the predictions are compared with those obtained, for example, 
by Grimshaw (1970,1971). Finally, the asymptotic behaviour of both the solitary 
wave and the oscillatory tail are assessed in the light of some numerical integra- 
tions of the equation. 

1. Introduction 
With the upsurge of interest and success in the solution of nonlinear wave prob- 

lems, which has occurred over the last decade or so, has come the Korteweg- 
de Vries (K-dV) equation in particular. Although this equation cannot represent 
the breaking of waves, it does enable smooth profiles to be formed by balancing 
the nonlinearity against dispersive effects. The equation may be written in the 
form 

u,+ uu, + uzxx = 0, (1) 

where u(x,  t )  is proportional to the amplitude of the wave, and (1) readily admits 
steady-state waves u ( x  - c t ) ,  which are described by the Jacobian elliptic cn- 
function. The special non-periodic limit of the oscillatory ‘cnoidal’ wave is the 
well-known solitary wave. 

This equation was first derived by Korteweg & de Vries (1895) to describe 
shallow-water waves in a two-dimensional channel of constant depth. More 
recently, the same equation has also been found to apply, for example, to collision- 
less plasmas (e.g. Kakutani et al. 1968). The real interest in the K-dV equation 
has sprung from the exact solutions found by Miura, Gardener & Kruskal(1968) 
which describe the production of a finite number of solitary waves (or ‘solitons’) 
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from appropriate initial data. In  particular, certain initial profiles of the form 
a sech2 (ax) will eventually decompose into an integral number of solitons. 

In 1969, Madsen & Mei reported that when a solitary wave, which was unchang- 
ing in a depth of water of, say, unity, entered a region where the bottom of the 
channel shelved, solitons were formed. This was predicted numerically by inte- 
grating equations based on the Boussinesq approximation and reasonable agree- 
ment was found with experimental data. Tappert & Zabusky (1971) showed, 
by using a WKB approximation for an abrupt change in depth, that a constant- 
coefficient K-dV equation could be constructed which gave the number (and 
amplitudes) of the solitons on the shelf. If the bottom shelved to a new constant 
depth do ( < l),  then just n solitons would eventually appear along the shelf 
provided that 

This result assumes that wave reflexion from the step may be neglected. 
The same prediction, (a), was also found by Johnson (1973); however, the 

procedure adopted here was to construct the relevant variable-coefficient K-dV 
equation. This was accomplished by deriving the K-dV equation in the standard 
(asymptotic) formulation but with the depth allowed to vary slowly on the scale 
of the appropriate small parameter. If, after non-dimensionalization, the ampli- 
tude is described by the parameter 6 and the dispersive effects by (depth/wave- 
length)2 = KS ( K  = O( i)), then an asymptotic solution for 6 -+ 0 may be derived. 
In the far field (time or distance 0(6-1), linearized characteristic co-ordinate 
O( 1)) the constant-coefficient K-dV equation (1) gives the relevant description 
of the surface profile. Now, if the depth of the channel is allowed to vary slowly as 
a function of the (non-dimensional) distance x, then d = d(&x), where E is another 
parameter (which may be unity). With the use of the full linearized characteristic 
co-ordinate 

do = [in(%+ I)]-$. ( 2 )  

< = p d r - l  0 = O(1) 

and the far-field co-ordinate X = 62, we obtain 

(a result also given by Ostrovskiy & Pelinovskiy (1970)t), which is valid in the 
far field as 8 + 0. The disturbance of the surface level from unity is 6y(X, 8). 
Removal of the ' Green's Law ' attenuation factor 

gives the variable-coefficient K-dV equation 

H,+$d-~HH6+QKd~H",, = 0 ( d  = d(EX)) .  (4) 

A discussion of this equation has previously been given by Johnson (1973), 
and some numerical results were presented in Johnson (1972). In the latter paper, 
the depth was changed not too slowly (e.g. e = 1) and the soliton 'fission' was 
reproduced. The agreement with Madsen & Mei (1969) was surprisingly good. In  

t The author is grateful to a referee for indicating the existenoe of this paper. 
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Johnson (1973) it  was proved that if the depth changes rapidly enough in (4) 
then the solitons will be produced according t o  (2) (for appropriate initial data). 
However, the problem of the ultra-slowly varying depth (i.e. E -+ 0 )  was not 
examined. 

The purpose of the present paper is to construct an asymptotic solution to 
(4)) as E --f 0, with a solitary-wave initial condition. This initial solitary wave 
will be just a steady-state solution of (4) with d = 1. As an overall aim, we shall 
first attempt to describe the development of the solitary wave. The results will 
be compared with a corresponding study undertaken by Grimshaw (1970, 1971), 
where interest was centred on the more complete Boussinesq equations. In  fact, 
some of Grimshaw’s conclusions seem a little in doubt owing to the lack of uni- 
form validity of his asymptotic expansions (see Ablowitz 1971). Second, and 
perhaps of even more interest, is the analysis of the structure of the oscillatory 
tail behind the solitary wave. In  this particular problem it is comforting to find 
that the oscillatory nature conforms with an elementary intuitive approach, 
e.g. approximating the nonlinear term. However, the formal construction and 
matching of this solution must be treated with a little care. 

2. Perturbation of the solitary wave 
Using the interpretation of the variable-coefficient K-dV equation (4) that 

has already been introduced, the variable X plays the role of a time-like GO- 

ordinate. Thus the initial-value problem may be described as follows. At X = O 
(and physically for ell X < O ) ,  thesurface profile is a solitary wave which moves 
with unchanging form over a depth d(0)  = I. For X >, 0 the depth smoothly 
changes. Also 

H ( X , [ )  --f 0 as [-++cc for all X < 60. 

Now, since the depth slowly changes by virtue of the parameter E ,  it  seems most 
convenient to seek a solution which is essentially a perturbation of the initial 
solitary wave. However, since the development of the wave will presumably 
occur on the scale E X ,  we introduce this as a ‘slow’ variable together with a quasi- 
steady-state variable T: 

where c(x)  is to be found. It is an unnecessary complication also to introduce a 
slow 

EX = x, T = [ - C ( X ) X ,  ( 5 )  

(or T) variable at  this stage. 
Substituting the new variables ( 5 )  into (4) gives 

EH,- (CX)’HT + $&zHHT + QKdkHTTT = O ( d  = d ( X ) ) ,  ( (9 
where the prime denotes differentiation with respect to x. Seeking an asymptotic 
solution in the form 

H ( x ,  T; E )  = &(x, T) + E H ~ ( x ,  T) + o ( E ) ,  (7)  

where Ho = b(x) +u(x) sech2 [a(x) TI, (8) 

implies t h a t  a2 = ( 3 / 4 ~ ) d 4 u ,  (cx)’ = &-Q(a+3b). ( 9) 
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If zero subscripts denote initial values, then the initial solitary wave is described 
by 

a, = (3a0/4~)4 ,  c, = &(ao + 3b,) (10) 

and a, and b, define the family of all such solitary waves. The relations (9) 
are deduced from the zeroth-order equation for H, by requiring that (8) be a 
valid description for all T. 

The equation for Hl becomes 

- ( C ~ ) ’ H ~ T + ~ ~ - H ( H , H ~ ) ~ + Q K ~ ~ H ~ T ~ T  = -Ho,, (11) 

which may be integrated directly (by writing HI = HOT f(x, T)) to give 

A(%), B(x) and C(x) are arbitrary €unctions to be chosen by applying appropriate 
boundary conditions to H(x ,  T; E )  (and hence Itl). 

Ahead of the solitary wave (T --f + co) the flow is undisturbed and consequently 
we choose A, B and C (and perhaps other functions) so that Hl -+ 0 as rapidly 
as possible in this limit. To this end, it is clear that the terms in (12) arising from 
b(x) will give growing terms as T -+ + 00 (of the form T sinh ZaT) unless 

dbldx = 0. 

Thus b(x) = b,, and without loss of generality we may choose b, = 0. This result 
is to be expected since we may always consider the solitary wave to be above the 
undisturbed level. Now to find A, B and C it is necessary to construct the 
solution for H,, and then examine its behaviour as T --f + co. Of course, we could 
obtain the relevant information by simpler means but we shall require a rather 
complete knowledge of HI to enable the details of the matching to be success- 
fully completed. Thus writing H, in (12) (with b _= 0) and integrating yields 

[ ( ( : ) I  

(y)’) (In lsinh aTI + cosh 2aT) H ---sech2aTtanhaT a - -- - 3 1  
- K d 4 a a 2  

+$(az/a2)a’{&a2T2-aT cothaT +ln (sinhaTI) 
+ BaA{BaT - 4 coth aT -t- sinh 2aT) 

-+(.”a)‘ {In (sinh aT 1 + sinh2 aT + 4 sinh4 aT) 
+ +TB(6OaT - 32 coth aT + 16 sinh 2aT + sinh 4aT) + C , (13)  I 

It is now an elementary exercise to examine (13) and it is evident that the 
original expansion (7 )  will be non-uniform in both the limits T & 00 (i.e. 
Hl/H0 is unbounded). To remove the exponential growth in Hl as T + +GO. 

we choose 

and C(x)  cannot he defined. In  fact C may be carried through and defined, to- 
gether with two of the three arbitrary functions which arise later, to  ensure that 
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H, is similarly behaved. Thus C(x) plays the role in H ,  that b(x) played here in 

Using the chosen form for A(%) and B(x), we observe that the expansion is 
still algebraically non-uniform as T -+ + co, but exponentially so as T -+ -cot. 
It would also appear that certainly the algebraic difficulties would be removable 
if we were to introduce an appropriate ‘slow’-T variable in the original formula- 
tion. Of course, this would give rise to a set of partial differential equations 
defining a, b, a and c,  together with an even more complicated expression for HI. 
The exponential non-uniformity as T --f - co may have to be treated rather more 
circumspectly. 

Now, to describe the solitary wave, the three functions a, a and c must be 
defined. So far the analysis has produced only two equations relating them, 
equations (9), and consequently the solution is not unique. It is to  be hoped 
that the procedure of matching to the appropriaOe solution outside the range 
of validity of (7) will completely determine Ho(x, T ) .  

3. Matching ahead of the solitary wave 

that the appropriate form for H is 
The algebraic breakdown of the asymptotic expansion as T -+ +co suggests 

H ( 2 e m p m ( x ) ~ m )  exp [ 5 yn(x) e - 1 ~ n  +&. 
m= 0 n=l 1 (15) 

&denotes terms exponentially small compared with those retained and these will 
arise from the nonlinear term in (6). Now (15) can be more conveniently written 
by introducing a ‘slow ’-T variable, as already suggested: 

The introduction of the functions hn(x, T) enables (16) to be a generalization 
of (15). However, we expect that if (16) were rewritten in terms of T, and ex- 
panded for e -+ 0, it would agree with (15), which in turn should match with 
(7 )  (as T -+ + 03). Thus the solution (16) is to be matched directly to the original 
expansion. 

To construct the expansion (16), equation (6) is rewritten with 7 = eT: 

H, - ( c x ) ~  H, + $d-$HH, + QE, Kdf HTT7 = 0, 

f, - ( C X ) ’ f ,  + iKd*f: = 0, 

(17)  

(18) 

‘0s- ( C x ) ’ h 0 7 + ~ K d ~ [ h 0 f T f ? T f h O T f ~ 2 ]  = (19) 

and substituting from (16) yields 

and so on. Unfortunately it is not possible to  write down a simple representation 
of the general solution for f(z, 7 ) ,  although this solution may be obtained by 

from the present analysis. 
t Note that any difficulty arising from the behaviour of d(m) (e.g. d(z) + 0) is excluded 

F L M  60 52 
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standard techniques. For the purposes of the present study it is most convenient 
to seek a solution as 7 + 0 of the form 

This gives directly 
f ( X ,  7 )  N al(x) 7 + a2(x) 7 2  + . . * . 

and correspondingly for ho, 
2k-%a2P07+ ..., 

h.0 + 2(cx)' - 

where Po(%) is arbitrary. Thus the behaviour of H ( x ,  7 )  as 7 -+ 0 becomes 

and the expansion of H ( x ,  T), from (7),  (S), (9) and (13), as T -+ +00 is 

H ( x , T )  N 4ae-2aT 

The two expansions, (20) and (21), match exactly if we 

(22) I (i) choose the negative sign for a,@), 
(ii) choose po(x) = 4a(z), 

(iii) choose (."a)' = 0. 

Now (iii) is the one final condition that was required to enable the slowly de- 
veloping solitary wave to be completely defined. As to its interpretation, we 
shall see shortly that it is related to the momentum distribution in the complete 
wave profile. Before considering this point in detail, the behaviour far ahead of 
the solitary wave will be examined, i.e. 7 -+ +00. 

The general solution for f(x,7) can easily be shown to exhibit similarity 
properties as 7 -+ + 00. In  particular, the similarity solution of (18) is 

The negative sign is appropriate if the profile is to decay. Solution (23) is exactly 
the exponent in the asymptotic form of the Airy function as deduced by solving 
the linearized form of (17). To find the asymptotic behaviour of ho(x,7),  it is 
convenient to use the exact solution of (19), which (with the aid of (18)) is 

where Eo is an arbitrary function. The matching condition 

ho(x,O) = 4a(x) 
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(which has already been employed in (22)) enables ho to  be completely determined. 
If we introduce the similarity form forf(x, T ) ,  then a little manipulation yields 

ha N k,D+ ( 2 5 )  

as 6 -+ + co, where k, is a prescribed constant depending on the initial solitary 
wave and the particular depth variation. Solution (25 )  is one of the family of 
similarity solutions of (19)) but is not related to those of the constant-coefficient 
K-dV equation (see appendix). 

The behaviour of the profile far ahead of the solitary wave is thus described by 

H(x,T)  - E,D-+exp --- - [ f ; (37 , 
which decays in both the limits 

xfixed, r + m ;  rfixed, z + w .  
It has been assumed here that d(x) either approaches a new constant depth or 
steadily increases as x -+ co. The ‘shoreline ’ problem denoted by d -+ 0 has already 
been excluded. 

Finally, to complete this section, the matching condition ( 2 2 )  is used to deter- 
mine the solitary wave, so that 

Note that the observed solitary-wave amplitude is given by 

when the Green’s law attenuation is reintroduced. 
ad-k = a,d-l (28) 

4. The oscillatory tail 

non-uniform as T --f -a. In  particular (8), (13) and (14) give 
We have already noted that the straightforward expansion is exponentially 

so that the expansion becomes invalid when 2 a T  = O(lne) or H = O(E) .  This 
suggests that the profile behind the solitary wave may be uniformly O(E),  which, 
if correct, will greatly simplify the construction of a solution. To confirm this, 
and also to make some general comments on the structure of the oscillations, we 
can argue as follows. 

The original equation ( 4 )  (or alternatively (6)) yields two simple conservation 
laws. [Although the standard K-dV equation yields an infinity of such laws, the 
variable-coefficient equation has only two;? see Johnson (1973).] By using the 
fact that H -+ 0 for 5 -+ & co (for all X ,  x < a), we obtain 

m m 

[ H(x ,  T; E )  dT = const, [ H2(x ,  T ;  E )  dT = const, (30) 
J --03 J --m 

t There is one other conservation law which can easily be written down; however, it is 
not ‘simple’ in that z and 5 appear explicitly. It corresponds to the special law given by 
Miura et al. (1968). 

52-2 
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which are just the conservation of mass and momentum, respectively. Note that 
(30) are exact. The constants may be evaluated by introducing the initial forms 
for H at x = 0. This yields 

4 a$ 
H(x,  T;s)dT = - , H2(x, T ;  E )  dT = --. 

3a0 
Now for T = O(1) we have an asymptotic representation of the solution to 

O(E),  and as T -+ +03 it differs only in exponentially small terms from the 
behaviour of the sech2 function. We may thus find an estimate for the mass and 
momentum carried by the profile behind the solitary wave. 

Let T:( < 0) be some O(1) value of T which may be regarded as defining the 
interface between the expansion we have (for T = O( 1)) and the solution we do 
not yet have for T --f -03. That this demarcation is not explicit in practice is 
irrelevant since our aim is to produce an order-of-magnitude estimate only. 
Writing the range of integration as ( - co, To) and (To, 03) and using the known 
solution in the latter integrals gives 

where W denotes ( -03, To). The error O ( E )  in (31) and (32) comes directly from 
the asymptotic expansion (7), and a further error which is exponentially small 
(as E + 0) will arise from the behaviour as T ,  T -+ 03. 

If the profile in W is of amplitude A(€)  over a range L(E),  outside which the solu- 
tion is exponentially small, then (31) and (32) imply that 

AL = O ( l ) ,  A2L = O ( S ) .  
Consequently the amplitude in W is necessarily nowhere greater than O(e) .  

To implement this information, it is convenient to rewrite (29) as 

where the next term takes the form E exp { - (2aT -In E ) ) .  Now introducing the 
new variables 

where 6’ is a phase function, we ensure that any oscillatory behaviour has a con 
stant period in 8. This formulation now corresponds directly with the solution 
found in $ 3  for T ++03. 

ET = 7, 8 = s-~P(x,  7; E ) ,  H = &(x, T, 8 ;  s),? 

Expanding 8 = no + eK1 + . . ., and substituting into (17)  yields 

(Pz - (cx)’ &) + *Kd@:80eeB = 0, 
whence for no to have a constant period 

K O  = ~ , ( x ,  7) + B ~ ( X ,  7) eiS + B;(X, T) e-is ( 34) 

with Fz - (cx)’F~ = Q Kd@;. (35)  

f Note added in proof. I n  a. recent private communication, Dr R. Grimshaw has 
suggested another formulation equivalent to the one employed here. 
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Of course, (35) is just (18) written for C < 0;  however, an important difference 
arises by virtue of the matching condition which involves E ,  namely 

F - i ( ~ l n s - 2 ~ ~ 7 )  as T +  0. 

The equation for 6, becomes 

QKdJF:(hls + K,,,,) + KO, - (cx)' KO, + 3 d - z ~ ~ K o  Loo + $ K ~ ~ F , ( F ,  Koee), = 0, 

a.nd for k,  to be periodic in 8, the terms giving rise to secular bekaviour must 
be removed, so that 

and 

A, is now forced by terms ek2ie. 

Aoz-(cx)'Ao, = 0 (36) 

(37) Boz - (CX)' Bo, - &Cd*F!(FTBo), -I- i$dfF,A,B, = 0. 

Both (36) and (37) may be integrated to give 

A ,  = ii,(C), B, = %$) exp [ j; {$Kdfr$q+#d-tLT,(C) $1ls=.dx] , (38) 

where $ = Fs, so that 5 = F($, x),with 2, and 3, arbitrary functions. Note that 
the solution for B, involves A,, arising from the nonlinearity; this is to be com- 
pared with h,; see (24). The matching conditions 

enable A ,  and B, to be found completely. As before, it is instructive to examine 
the solution far behind the solitary wave (7 + -XI), and in particular derive the 
envelope of the oscillations. 

Using the similarity solution 
F = $( -{/Di)% (5 < 0)  (see (23)), 

then (38), after some manipulation, yields 
A ,  N 0,  B, - k1D3(-C)S ([+-XI), 

where Ic, is a prescribed constant (similar to k,), Once again, this similarity solu- 
tion bears no relation to those obtainable from the constant-coefficient K-d\7 
equation. 

5. Discussion 
Qualitatively, the solution we have obtained for E + 0 indicates that the soli- 

ton retains its identity, as is to be expected. In  particular it has been defined by 
applying the conservation of momentum for the soliton alone, which arose quite 
naturally as the matching condition across the non-uniformity ahead. Quanti- 
tatively, the soliton (as observed) will have an amplitude proportional to d-I, 

which agrees with Grimshaw (1970, 1971) for small amplitudes. These results 
also confirm the contention of Ostrovskiy & Pelinovskiy (1970) that this de- 
pendence is on d-l and not d-%. 
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The phase function aT can also be seen to  agree with Grimshaw’s analysis. 
For example, we could suppose that when 

x 2 x,, d = d, (constant) 

(where d, is arbitrary but finite and non-zero) then 

T = e - l [ S i 1 ( 6 - l d - ? - 3 a O d - t ) d ~  +e-1(6-ld~3-&xOd$) ( ~ - 2 ~ )  - t .  
0 1 

The first term is just a phase shift and so we have a propagation speed 

in the x ,  t plane. Clearly, as 6 --f 0, the classical result is retrieved and higher order 
terms coincide with Grimshaw (1970). Of course, since Grimshaw assumed that 
the solitary wave was a uniform representation of the solution, his conclusions 
will essentially be reproduced by the present theory. Note, however, that Grim- 
shaw studied the more complete Boussinesq equations from which the K-dV 
equation may be derived. 

In $4, by examining the non-uniformities behind the solitary wave, the solution 
in the oscillatory tail was constructed. It is worthy of note that although this 
wave is uniformly O(e), the mass carried by it may vary by an O(1) amount (see 
(31)).  In  fact, if 1 2 d > 0, the mass transfers to the oscillations as d decreases 
(being careful to avoid the formal limit d --f 0). As d increases from unity the mass 
in W becomes negative and the amplitude of the soliton decreases. Eventually, 
say when d = O(e-l), the soliton will no longer be discernible separate from the 
oscillations and a completely oscillatory profile would seem a reasonable repre- 
sentation. This was the asymptotic solution assumed in Johnson (1973) for the 
development into deeper water. 

In conclusion, the efficacy of the asymptotic predictions may be examined by 
comparing them with some numerical results. Using the scheme discussed in 
Johnson (1972), the variable-coefficient K-dV equation (4) was integrated for 
various e and for both increasing and decreasing depths. In  figure 1 is given the 
solitary-wave amplitude for various e in a decreasing depth of water; for compari- 
son the predicted behaviour d-3 is also shown (the attenuation d-* is not included). 
Second, in figure 2 is shown the peak (and trough) envelope for the oscillatory 
wave over increasing and decreasing depths, together with the asymptotic 
behaviour c-5. 

The evidence seems fairly conclusive. First, the amplitude variation clearly 
approaches the asymptotic solution as 8 --f 0. Curves for decreasing depth are 
presented, but the same holds true if the depth is increased. Even more comfort- 
ing is the close correspondence between the envelope of the oscillatory wave and 
the power-law decay of - 5. Note that this behaviour is at variance with that pre- 
dicted by using the constant-coefficient K-dV equation (see appendix). 
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1 0.5 
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FIGURE 1. The solitary-wave ainplitucle a/a, as obtained from numerical integration of 
equation (4) for various E.  - - , E =  0.8; -.-, E =  0.5; --- -, E = 0.05. --, asymp- 
totic t.heory, ./ao = d-4. 

0.004 I 
5 10 20 30 

T 

FIGURE 2. The position and amplitude of the peaks and troughs ( x - 1) from numerical 
integrations of equation (4). 0 ,  depth decreasing, E = 0.05; x , depth increasing, E = 0.1; 
-, theoretical prediction for slope of - 3fr. The slope of numerical results is about - 3.2. 
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Appendix. Similarity solutions of the K-dV equation 
The constant-coefficient equation is of the form 

u, + uuz + u,. = 0, 

x + r * x ,  t +rt, u - + r - h  

which remains unaltered under the transformation 

for constant r .  Thus a similarity solution may be represented by 
‘lc = p X - 2 - 3 ~  As), 7 = d-3, 

with the two extreme cases 

p = 0, u = x-2 f(y);  p = -;, zc = t-%f(q). 

The particular value p = - $ with 

f(7) exponential as 11 -+ + 00, f(7) trigonometric as 7 -+ - 00 

was discussed by Berezin & Karpman (1 964). In a paper shortly to appear in J .  
Jfath. Phys., M. J. Ablowitz & A. C. Newel1 have shown how this similarity solu- 
tion is relevant to the continuous spectrum of the constant-coefficient K-dV 
equation. 
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